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Abstract

The group of rational points on an elliptic curve over Q is always a finitely generated Abelian
group, hence isomorphic to Zr × G with G a finite Abelian group. Here, r is the rank of the
elliptic curve. In this paper, we determine sufficient conditions that need to be set on the prime
numbers p and q so that the elliptic curve E : y2 = x3 − 3pqx over Qwould possess a rank zero
or one. Specifically, we verify that if distinct primes p and q satisfy the congruence p ≡ q ≡ 5
(mod 24), then E has rank zero. Furthermore, if p ≡ 5 (mod 12) is considered instead of a
modulus of 24, then E has rank zero or one. Lastly, for primes of the form p = 24k + 17 and
q = 24ℓ+ 5, where 9k + 3ℓ+ 7 is a perfect square, we show that E has rank one.
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1 Introduction

Elliptic curves (ECs) are structured as C : y2 = x3 +Ax+B with an additional property that
its discriminant ∆ := −16(4A3 + 27B2) is non-zero. Its collection of rational points C(Q) has a
well-defined addition lawmaking it as a commutative group, with the additive identityO (known
as ‘point of infinity’). A celebrated result of Mordell (andWeil) states that C(Q) can be generated
finitely. Hence,

C(Q) ∼= C(Q)tors ⊕ Zr,

where C(Q)tors is the torsion subgroup of C(Q); that is, the collection of points with finite order,
and r > 0 is called the rank of C. There are ways on how to compute C(Q)tors. One of which
is by utilizing the theorem of Nagell-Lutz. However, an algorithm that can compute the rank of
any elliptic curve is yet to be created or discovered. Hence, finding the ranks of families of elliptic
curves is of interest to many number theorists.

Recently, there are research studies on families of ECs y2 = x3 + bx where finding their ranks
is one of the goals. In 2007, Spearman [9] determined the values of prime p for which the elliptic
curve (EC) y2 = x3 − px has rank two. In the same year, he also gave conditions on 2p, where p
is prime, so that the EC y2 = x3 − 2px will have a rank of three [10]. In 2010, Hollier et al. [4]
considered ECs y2 = x3 + pqx, where primes p and q are distinct. In 2011, Fujita and Terai [3]
considered y2 = x3 − pkx, where p is prime and k = 1, 2, 3. They provided sufficient as well as
necessary conditions for the rank of the given curve to be equal to one or two. In 2014, Daghigh
and Didari [1] determined the ranks of ECs of type y2 = x3 − 3px. In 2015, they studied the ECs
y2 = x3 − pqx, where primes p and q are of different values [2]. In the same year, Kim [6] studied
ECs y2 = x3 ± 4px, where p is a prime number.

We are motivated to contribute to the literature of finding ranks of elliptic curves. In this work,
we focus on elliptic curves having the structure

y2 = x3 − 3pqx, (1)

where the primes p and q have different values. We provide conditions on p and q so that (1) will
have a rank equal to zero. Moreover, we provide values of p and q so that the rank of (1) is exactly
one. The main results are stated in the third section.

Here is the method that we used in finding ranks of elliptic curves.

Consider an elliptic curveE : y2 = x3+ax2+ bx, where a and b are rational numbers. a, b ∈ Q.
Note that T := (0, 0) is a rational point on E of order 2, i.e., 2T = O. Given another elliptic curve
E : y2 = x3 − 2ax2 + (a2 − 4b)x, there exists an isogeny ϕ : E → E of degree 2 given by

ϕ(x, y) =

(
y2

x2
,
y(x2 − b)

x2

)
.

Thus, E and E are 2-isogenous curves. Let Γ and Γ be the groups of rational points on E and E,
respectively. Let Q× be the multiplicative group of non-zero rational numbers. Also, let Q×2 the
subgroup of Q× of squares of rational numbers; that is,

Q×2 = {u2 | u ∈ Q×}.

Then, there is a group homomorphism α : Γ −→ Q×/Q×2 defined as
α(O) = 1 (modQ×2)

α(T ) = b (modQ×2)

α(x, y) = x (modQ×2) if x ̸= 0,
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where O is the identity in Γ. Similarly, there is a group homomorphism
α : Γ −→ Q×/Q×2 given by 

α(O) = 1 (modQ×2)

α(T ) = a2 − 4b (modQ×2)

α(x, y) = x (modQ×2) if x ̸= 0,

where O is the identity in Γ.

The group α(Γ) comprises 1, b and all factors b1 of b, all modulo Q×2. Here, b1 ̸≡ 1, or b
(mod Q×2), such that a triple (N,M, e) ∈ Z3, whereM ̸= 0, e ̸= 0, solves the Diophantine equation
(also called ’torsors’)

T : N2 = b1M
4 + aM2e2 + b2e

4, with b1b2 = b,

and satisfies the following divisibility criteria:

gcd(N, e) = gcd(M, e) = gcd(b1, e) = gcd(b2,M) = gcd(M,N) = 1.

Similarly, the group α(Γ) comprises 1, a2 − 4b and all factors b1 of a2 − 4b (mod Q×2), with b1 ̸≡
1, or a2 − 4b (mod Q×2), such that a triple (N,M, e) ∈ Z3, where M ̸= 0, e ̸= 0, satisfies the
Diophantine equation

T
′
: N2 = b1M

4 − 2aM2e2 + b2e
4, with b1b2 = a2 − 4b,

and the gcd criteria mentioned above. Then, we have the following formula involving the rank r
of E:

2r =
1

4
(|α(Γ)| · |α(Γ)|),

where | · | denotes the order of the finite group. For more details about this method, we refer the
reader to [8].

For some applications of elliptic curves, we refer the reader to [7] and [5].

2 Results

The main theorem will now be stated and proven in this section.

Theorem 2.1. Suppose distinct primes p and q satisfy the congruence p ≡ q ≡ 5 (mod 24). Then
E : y2 = x3 − 3pqx is an elliptic curve with rank equal to zero.

Proof. We have E : y2 = x3 − 3pqx and E : y2 = x3 + 12pqx. We first determine |α(Γ)|. Note that
1,−3pq ∈ α(Γ) by definition of α. We also have all the possible divisors of −3pq modulo Q×2 in
the following set

{3pq, −1, ±3q, ±p, ±pq, ±3, ±3p, ±q}.

We then consider the solvability of the following torsors over the set of integers.

T1 : N2 = 3pqM4 − e4

T2 : N2 = 3qM4 − pe4
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T3 : N2 = pM4 − 3qe4.

T4 : N2 = pqM4 − 3e4

T5 : N2 = 3M4 − pqe4

T6 : N2 = 3pM4 − qe4.

T7 : N2 = qM4 − 3pe4.

Lemma 2.1. There are no integer solutions for the torsor T1 : N2 = 3pqM4 − e4.

Proof. Reducing T1 modulo 3, we get N2 ≡ −e4 (mod 3). This implies

1 =

(
−e4

3

)
=

(
−1

3

)
=

(
2

3

)
= −1,

which is a contradiction. Thus, T1 has no solutions in Z.

Lemma 2.2. There are no integer solutions for the torsor T2 : N2 = 3qM4 − pe4.

Proof. First note that the assumption implies p ≡ q ≡ 1 (mod 4). Reducing T2 modulo 4, we get
N2 ≡ 3M4 − e4 (mod 4). By the divisibility criteria, we have the various scenarios:

1. N even,M odd and e odd. In this case, we end up with a false argument:
0 ≡ 3− 1 ≡ 2 (mod 4).

2. N odd,M even and e odd. In this case, we end up with another contradiction:
1 ≡ 0− 1 ≡ 3 (mod 4).

3. N odd,M odd and e even. In this case, we have 1 ≡ 3− 0 ≡ 3 (mod 4), which is a
contradiction.

In any case, we get a contradiction. Thus, T2 has no solutions in Z.

Lemma 2.3. There are no solutions for the torsor T3 : N2 = pM4 − 3qe4.

Proof. Reducing T3 modulo 3, we get N2 ≡ pM4 (mod 3). This implies

1 =

(
pM4

3

)
=

(p
3

)
=

(
2

3

)
= −1,

since p ≡ 2 (mod 3). This is a contradiction. Thus, T3 has no solutions in Z.

Lemma 2.4. There are no integer solutions for the torsor T4 : N2 = pqM4 − 3e4.

Proof. Reducing T4 modulo p, we get N2 ≡ −3e4 (mod p). This implies

1 =

(
−3e4

p

)
=

(
−3

p

)
.

Since (
−3

p

)
=

{
1 if p ≡ 1 or 7 (mod 12)

−1 if p ≡ 5 or 11 (mod 12)
,

we get p ≡ 1 (mod 12) or p ≡ 7 (mod 12). This means that p ≡ 1 (mod 3). This is a contradiction
to the assumption that p ≡ 5 (mod 24) (i.e. p ≡ 2 (mod 3)). Thus, T4 has no solutions in Z.
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Lemma 2.5. There are no integer solutions for the torsor T5 : N2 = 3M4 − pqe4.

Proof. Reducing T5 modulo 3, we get N2 ≡ −pqe4 (mod 3). Since p ≡ q ≡ 2 (mod 3) by assump-
tion, we get N2 ≡ −e4 (mod 3). This implies

1 =

(
−e4

3

)
=

(
−1

3

)
=

(
2

3

)
= −1,

which is a contradiction. Thus, T5 has no solutions in Z.

Lemma 2.6. There are no integer solutions for the torsor T6 : N2 = 3pM4 − qe4.

Proof. By applying the assumptions, we get p ≡ q ≡ 1 (mod 4). Reducing T6 modulo 4, we get
N2 ≡ 3M4 − e4 (mod 4). By the divisibility criteria, we can consider the following scenarios:

1. N even,M odd and e odd. In this case, we arrive at a contradictory statement:
0 ≡ 3− 1 ≡ 2 (mod 4).

2. N odd,M even and e odd. In this case, we have 1 ≡ 0− 1 ≡ 3 (mod 4), which is false.

3. N odd,M odd and e even. In this case, we have 1 ≡ 3− 0 ≡ 3 (mod 4), which is a
contradiction.

In any case, we get a contradiction. Thus, T6 has no solutions in Z.

Lemma 2.7. There are no integer solutions for the torsor T7 : N2 = qM4 − 3pe4.

Proof. Reducing T7 modulo 3, we get N2 ≡ qM4 (mod 3). This implies

1 =

(
qM4

3

)
=

(q
3

)
=

(
2

3

)
= −1,

since q ≡ 2 (mod 3). This is a contradiction. Thus, T7 has no solutions in Z.

We have presented that α(Γ) = {1,−3pq} and so |α(Γ)| = 2. We then determine |α(Γ)|. Recall
thatE : y2 = x3+12pqx andwe already have 1, 12pq ∈ α(Γ). We also have all the possible divisors
b1 of 12pq modulo Q×2 in the following set

{2, 3, 4, 6, 12, q, 2q, 3q, 4q, 6q, 12q, p, 2p, 3p, 4p, 6p, 12p, pq, 2pq, 3pq, 4pq, 6pq}.

We removed the negative values of b1 since the corresponding torsorsN2 = b1M
4+ b2e

4 will have
no solutions if b1 and b2 are both negative. Hence, we consider the solvability of the following
torsors over the set of integers.

T
′

1 : N2 = 2M4 + 6pqe4

T
′

2 : N2 = 3M4 + 4pqe4

T
′

3 : N2 = 4M4 + 3pqe4.

T
′

4 : N2 = 6M4 + 2pqe4
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T
′

5 : N2 = 12M4 + pqe4.

T
′

6 : N2 = qM4 + 12pe4

T
′

7 : N2 = 2qM4 + 6pe4.

T
′

8 : N2 = 3qM4 + 4pe4

T
′

9 : N2 = 4qM4 + 3pe4

T
′

10 : N2 = 6qM4 + 2pe4.

T
′

11 : N2 = 12qM4 + pe4

Lemma 2.8. There are no integer solutions for the torsor T ′

1 : N2 = 2M4 + 6pqe4 .

Proof. Reducing T ′

1 modulo 3, we get N2 ≡ 2M4 (mod 3). This implies

1 =

(
2M4

3

)
=

(
2

3

)
= −1,

which is a contradiction. Thus, T ′

1 has no solutions in Z.

Lemma 2.9. There are no integer solutions for the torsor T ′

2 : N2 = 3M4 + 4pqe4.

Proof. By the divisibility criteria, since 4pq is even, we haveM odd and consequently,N odd. Thus,
N2 ≡ M4 ≡ 1 (mod 4). Reducing T ′

2 modulo 4, we get 1 ≡ 3(1) (mod 4). We get a contradiction.
Thus, T ′

2 has no solutions in Z.

Lemma 2.10. There are no integer solutions for the torsor T ′

3 : N2 = 4M4 + 3pqe4.

Proof. By the divisibility criteria, since 4 is even, we have e odd and consequently, N odd. Thus,
N2 ≡ e4 ≡ 1 (mod 4). Also, p ≡ q ≡ 1 (mod 4) by assumption. Reducing T ′

3 modulo 4, we get
1 ≡ 3 (mod 4), which is a contradiction. Thus, T ′

3 has no solutions in Z.

Lemma 2.11. There are no integer solutions for the torsor T ′

4 : N2 = 6M4 + 2pqe4.

Proof. By the divisibility criteria, we have 3 ∤ e and consequently, 3 ∤ N . Thus, N2 ≡ e4 ≡ 1

(mod 3). Also, p ≡ q ≡ 2 (mod 3). Reducing T ′

4 modulo 3, we get 1 ≡ 2(2)(2) ≡ 2 (mod 3), which
is a contradiction. Thus, T ′

4 has no solutions in Z.

Lemma 2.12. There are no integer solutions for the torsor T ′

5 : N2 = 12M4 + pqe4.

Proof. Reducing T ′

5 modulo p, we get N2 ≡ 12M4 (mod p). This implies

1 =

(
12M4

p

)
=

(
3

p

)
.

Since (
3

p

)
=

{
1 if p ≡ 1 or 11 (mod 12)

−1 if p ≡ 5 or 7 (mod 12)
,

we obtain p ≡ 1 or 11 (mod 12). This is a contradiction to the assumption that p ≡ 5 (mod 12).
Thus, T ′

5 has no solutions in Z.
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Lemma 2.13. There are no integer solutions for the torsor T ′

6 : N2 = qM4 + 12pe4.

Proof. Reducing T ′

6 modulo 3, we get N2 ≡ qM4 (mod 3). This implies

1 =

(
qM4

3

)
=

(q
3

)
=

(
2

3

)
= −1,

since q ≡ 2 (mod 3). This is a contradiction. Thus, T ′

6 has no solutions in Z.

Lemma 2.14. There are no integer solutions for the torsor T ′

7 : N2 = 2qM4 + 6pe4.

Proof. By the divisibility criteria, we know that both M and e are odd. Note also that there exists
an integerN1 such that 2N2

1 = qM4+3pe4. Reducing the equation modulo 8, we get 2N2
1 ≡ q+3p

(mod 8). Note that p ≡ q ≡ 5 (mod 8) by assumption. So we get 2N2
1 ≡ 5 + 3(5) ≡ 4 (mod 8).

Dividing both sides by 2, we obtain N2
1 ≡ 2 (mod 4), which is a contradiction. Thus, T ′

7 has no
solutions in Z.

Lemma 2.15. There are no integer solutions for the torsor T ′

8 : N2 = 3qM4 + 4pe4.

Proof. By the divisibility criteria, we have 3 ∤ e and consequently, 3 ∤ N . Thus, N2 ≡ e4 ≡ 1

(mod 3). Also, p ≡ q ≡ 2 (mod 3) by assumption. Reducing T ′

8 modulo 3, we get 1 ≡ 2 (mod 3),
which is a contradiction. Thus, T ′

8 has no solutions in Z.

Lemma 2.16. There are no integer solutions for the torsor T ′

9 : N2 = 4qM4 + 3pe4.

Proof. By divisibility criteria, since 4q is even, we have e odd. Reducing T ′

9 modulo 4, we getN2 ≡
3pe4 ≡ 3p (mod 4). Since p ≡ 1 (mod 4), we obtain N2 ≡ 3 (mod 4), which is a contradiction.
Thus, T ′

9 has no solutions in Z.

Lemma 2.17. There are no integer solutions for the torsor T ′

10 : N2 = 6qM4 + 2pe4.

Proof. By the divisibility criteria, we know that both M and e are odd. Note also that there exists
an integerN1 such that 2N2

1 = 3qM4+pe4. Reducing the equation modulo 8, we get 2N2
1 ≡ 3q+p

(mod 8). Note that p ≡ q ≡ 5 (mod 8) by assumption. So we get 2N2
1 ≡ 3(5) + 5 ≡ 4 (mod 8).

Dividing both sides by 2, we obtain N2
1 ≡ 2 (mod 4), which is a contradiction. Thus, T ′

10 has no
solutions in Z.

Lemma 2.18. There are no integer solutions for the torsor T ′

11 : N2 = 12qM4 + pe4.

Proof. Reducing T ′

11 modulo 3, we get N2 ≡ pe4 (mod 3). This implies

1 =

(
pe4

3

)
=

(p
3

)
=

(
2

3

)
= −1

since p ≡ 2 (mod 3). This is a contradiction. Thus, T ′

11 has no solutions in Z.

73



R. J. S. Mina and J. B. Bacani Malaysian J. Math. Sci. 17(1): 67–76(2023) 67 - 76

Thus, we have shown that α(Γ) = {1, 12pq} and so |α(Γ)| = 2. Using the formula for the rank,
we have

2r =
1

4
(|α(Γ)| · |α(Γ)|) = (2)(2)

4
= 1,

for which we get that r = 0. This proves the main result.

By imposing less stricter assumptions on p and q, the following corollaries are obtained:

Corollary 2.1. Under the same assumptions of Theorem 2.1, if the congruence p ≡ 5 (mod 24) is replaced
by p ≡ 5 (mod 12), then the elliptic curve E has rank at most one.

Proof. The removed restriction from this case is that p need not satisfy p ≡ 5 (mod 8). In that
case, we see from the proof of Theorem 2.1 that all but two torsors T ′

7 and T ′

10, did not use the
assumption p ≡ 5 (mod 8). This implies that the torsors T ′

7 and T ′

10 may have solutions. So it is
possible that 2q, 6p, 2p, 6q ∈ α(Γ) making |α(Γ)| ≤ 6. As a consequence, we obtain 0 ≤ r ≤ 1.

The same holds if we replace the assumption q ≡ 5 (mod 24) by q ≡ 5 (mod 12) in Theorem
2.1. From this corollary, we obtain specific values of p and q such that the rank of E is exactly one.

Theorem 2.2. Let p = 24k + 17 and q = 24ℓ + 5 for some k, ℓ ∈ N0. If 9k + 3ℓ + 7 is a perfect square,
then E has rank equal to one.

Proof. If p = 24k + 17 and q = 24ℓ + 5, then it satisfies the assumptions of Corollary 2.1, so, the
only torsors that may have a solution are T ′

7 and T ′

10. Also,

T
′

7 : N2 = 2(24ℓ+ 5)M4 + 6(24k + 17)e4

has a solution (N,M, e) = (4
√
9k + 3ℓ+ 7, 1, 1). Hence, 2q, 6p ∈ α(Γ). Moreover, T ′

10 cannot have
a solution, otherwise, 2p, 6q ∈ α(Γ)would imply that

|α(Γ)| = 6.

Applying the rank’s formula, we obtain

2r =
1

4
(|α(Γ)|)|α(Γ)| = (2)(6)

4
= 3,

which is not possible. Hence, |α(Γ)| = 4. As a consequence, we obtain r = 1.

To confirm our result in Theorem 2.1, we list down in Table 1 some pairs of primes p and q > p
that satisfy the said conditions, and the rank of the corresponding elliptic curves. All computations
are done in SAGE [11].

Also, to confirm our results in Theorem 2.2, we list down in Table 2 some prime pairs p and
q > p that satisfy the said conditions, the corresponding rank of E and a generator of the free part
of the Mordell-Weil group.
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Table 1: Values of primes p and q that satisfy conditions in Theorem 2.1.

p q rank(E)
5 29 0
29 53 0
53 149 0
101 197 0
149 173 0
173 197 0
173 269 0
269 389 0

Table 2: Values of primes p and q that satisfy conditions in Theorem 2.2.

k ℓ p q rank(E) generator
0 6 17 149 1 (100, 490)
0 19 17 461 1 (256, 3280)
1 11 41 269 1 (196, 1022)
3 29 89 701 1 (484, 4774)
4 7 113 173 1 (256, 1328)
4 19 113 461 1 (400, 1220)
5 16 137 389 1 (400, 220)
5 23 137 557 1 (484, 1606)
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